Michael Korbman, Stanislav Yu. Kruchinin, Vladislav S. Yakovlev
We have investigated the polarization response of a dielectric to intense few-cycle laser pulses with a focus on interband tunnelling. Once charge carriers are created in an initially empty conduction band, they make a significant contribution to the polarization response. In particular, the coherent superposition of conduction- and valence-band states results in quantum beats. We investigate how the quantum-beat part of the polarization response is affected by excitation dynamics and the attosecond-scale motion of charge carriers in an intense laser field. We find that, with the onset of tunnelling and Bloch oscillations, the nonlinear polarization response becomes sensitive to the carrier-envelope phase of a laser pulse.
View original:
http://arxiv.org/abs/1210.2238
No comments:
Post a Comment