O. P. Sushkov, A. I. Milstein, M. Mori, S. Maekawa
The side-jump effect is a manifestation of the spin orbit interaction in electron scattering from an atom/ion/impurity. The effect has a broad interest because of its conceptual importance for generic spin-orbital physics, in particular the effect is widely discussed in spintronics. We reexamine the effect accounting for the exact nonperturbative electron wave function inside the atomic core. We find that value of the effect is much smaller than estimates accepted in literature. The reduction factor is 1/Z^2, where Z is the nucleus charge of the atom/impurity. This implies that the side-jump effect is practically irrelevant for spintronics, the skew scattering and/or the intrinsic mechanism always dominate the anomalous Hall and spin Hall effects.
View original:
http://arxiv.org/abs/1211.2372
No comments:
Post a Comment