J. A. Camargo, R. Baquero
Recently in the Wien2k code, the modified Becke-Johnson potential (mBJLDA) was implemented. As the authors [{\em Phys.Rev.Lett.} 102, 226401 (2009)] point, this potential reproduces the band gap of semiconductors with improved accuracy. In this paper we present our analysis of this potential in two directions. First, we checked whether this potential reproduces the band structure for metals, an analysis that lacked in the literature. We calculated the band gap of a group of semiconductors. We observed that the Linear Density Approximation (LDA) give rise to a shorter lattice constant as compared to experiment. The Generalized Gradient Approximation behaves oppositely. Using the average, $a_{Avg}$, in the mBJLDA potential, we obtained a closer to experiment value for the gap. We conclude that the new mBJLDA potential represent an important improvement as compared to the results from the previous version of the Wien2k code. Also the mBJLDA potential can be a very useful tool for the theoretical study of complex systems containing semiconductor compounds such as surfaces, superlattices and interfaces.
View original:
http://arxiv.org/abs/1108.3094
No comments:
Post a Comment