I. H. Neumann, R. J. Zieve
We present measurements of how a single vortex line in superfluid helium interacts with a macroscopic bump on the chamber wall. At a general level our measurements confirm computational work on vortex pinning by a hemispherical bump, but not all the details agree. Rather than observing a unique pin location, we find that a given applied velocity field can support pinning at multiple sites along the bump, both near its apex and near its edge. We also find that pinning is less favorable than expected. A vortex can pass near or even traverse the bump itself with or without pinning, depending on its path of approach to the bump.
View original:
http://arxiv.org/abs/1307.5584
No comments:
Post a Comment