H. Flayac, G. Pavlovic, M. A. Kaliteevski, I. A. Shelykh
We have theoretically demonstrated the on demand electric generation of
vortices in an exciton-polariton superfluid. Electric pulses applied to a
horseshoe-shaped metallic mesa, deposited on top of the microcavity, generate a
non-cylindrically symmetric solitonic wave in the system. Breakdown of its
wavefront at focal points leads to the formation of vortex-antivortex pairs
which subsequently propagate in the superfluid. The trajectory of these vortex
dipoles can be controlled by applying a voltage to additional electrodes. They
can be confined within channels formed by metallic stripes and unbound by a
wedged mesa giving birth to grey solitons. Finally single static vortices can
be generated using a single metallic plate configuration.
View original:
http://arxiv.org/abs/1108.5901
No comments:
Post a Comment