Dmitry A. Bykov, Leonid L. Doskolovich
Numerical methods for calculating poles of the scattering matrix with applications in grating theory are discussed. A new iterative method for computing the matrix poles is proposed. The method takes account of the scattering matrix form in the pole vicinity and relies upon solving matrix equations with use of spectral decompositions. Using the same mathematical approach, we also describe a Cauchy-integral-based method that allows all the poles in a specified domain to be calculated. Calculation of the modes of a metal-dielectric diffraction grating shows that the iterative method proposed has the high rate of convergence and is numerically stable for large-dimension scattering matrices. An important advantage of the proposed method is that it usually converges to the nearest pole.
View original:
http://arxiv.org/abs/1206.3388
No comments:
Post a Comment