Robert Raussendorf, Tzu-Chieh Wei
Quantum computation is a novel way of information processing which allows, for certain classes of problems, exponential speedups over classical computation. Various models of quantum computation exist, such as the adiabatic, circuit and measurement-based models. They have been proven equivalent in their computational power, but operate very differently. As such, they may be suitable for realization in different physical systems, and also offer different perspectives on open questions such as the precise origin of the quantum speedup. Here, we give an introduction to the one-way quantum computer, a scheme of measurement-based quantum computation. In this model, the computation is driven by local measurements on a carefully chosen, highly entangled state. We discuss various aspects of this computational scheme, such as the role of entanglement and quantum correlations. We also give examples for ground states of simple Hamiltonians which enable universal quantum computation by local measurements.
View original:
http://arxiv.org/abs/1208.0041
No comments:
Post a Comment