Monday, September 24, 2012

1209.4844 (Dario Calvani et al.)

Parametric representation of open quantum systems and crossover from
quantum to classical environment

Dario Calvani, Alessandro Cuccoli, Nikitas Gidopoulos, Paola Verrucchi
We propose an approach to the study of open quantum systems based on a parametric representation of the principal system. The representation is obtained introducing generalized coherent states for the environment, and is such that the evolution from a fully quantum environment to a classical one can be inherently followed. The method is applied to the specific case where the principal system is a central qubit and the environment is a surrounding ring of interacting spins, with the overall Hamiltonian being that of the $s=1/2$ Heisenberg star with frustration. In this case the quantum character of the environment, embodied by the total spin $S$ of the ring, can be physically varied by acting on the ratio between the couplings entering the Hamiltonian, and formally followed by increasing $S$. We find that when the star is in any of its eigenstates, the qubit behaves as if it were under the effect of an external magnetic field, whose direction in real space is set by the variables defining the environmental coherent states, and is hence broadened according to their quantum probability distribution. When the quantum character of the environment is reduced, such distribution becomes narrower, finally collapsing into a Dirac-$\delta$ as $S\to\infty$. The entanglement between the central qubit and its environment remains well defined even in this limit, where it comes across as the binary entropy of the $2\pi$-normalized Berry phase characterizing the dynamics of a qubit in an adiabatically precessing magnetic field.
View original:

No comments:

Post a Comment